Geo-referenced UAV Localization

Mo Shan

Paopao Robot Talk

March, 2018

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Outline

[Geo-referenced localization](#page-2-0)

[Feature based image matching](#page-12-0) [Gradient based image matching](#page-24-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Motivation

- \triangleright UAV flies in outdoor environment, over houses, roads, etc
- \triangleright GPS alone may be insufficient, eg jamming, disaster management
- \blacktriangleright The operating zone is usually known
- \triangleright An easily accessible, memory efficient prior map could be used as reference, eg Google Map

KORKA SERKER ORA

Problem overview

 \triangleright UAV relies on camera, IMU, barometer, prior map

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Problem definition

- Given a prior map M , a sequence of images $\mathcal{X} = \{x_1, ..., x_{t-1}\}\$, IMU data $\mathcal{Y} = \{y_1, ..., y_{t-1}\}\$, where y_i contains angular velocities and roll, pitch, yaw angles, and altitude $\mathcal{D} = \{d_1, ..., d_{t-1}\}\)$, where $d_i \in \mathbb{R}_{>0}$, $t \in \{1, ..., T\}\$
- \triangleright Calculate the maximum likelihood location $l_t = \mathsf{argmax} P(l | \mathcal{M}, \mathcal{X}, \mathcal{Y}, \mathcal{D})$ l
- \triangleright Simplified as: given the previous state, the current state is independent of the history

KORK ERKER ADE YOUR

$$
\blacktriangleright I_t = \underset{l}{\text{argmax}} P(l | \mathcal{M}, x_{t-1}, x_t, y_{t-1}, y_t, d_{t-1}, d_t, l_{t-1})
$$

Challenges

- \triangleright Significant scene changes due to difference in modality, viewpoint, weather, etc
- \blacktriangleright Lack of visible features in certain regions of low resolution map

KORKA SERKER ORA

 \blacktriangleright Large illumination variation for on-the-fly images

Literature review

- \blacktriangleright Image registration technique realized by edge matching
- \triangleright The registration is robust to change in scale, rotation and illumination to a certain extend
- \blacktriangleright However, during the whole flight there are few successful matches

KORK ERKER ER AGA

Source: Conte and Doherty

Literature review

- \triangleright UAV images are segmented into superpixels and then classified as grass, asphalt and house
- \triangleright Circular regions are selected to construct the class histograms, which are rotation invariant
- \blacktriangleright However, discarding rotation gives rise to the classification uncertainty

KORKA SERKER ORA

Source: Lindsten et al.

Initial position

- \triangleright Correlation filter is used for global localization
- \triangleright F is 2D Fourier transform of the input image
- \blacktriangleright H is the transform of the filter
- \triangleright \odot denotes element wise multiplication and $*$ indicates complex conjugate.
- \triangleright We correlate the current frame and the map.
- \triangleright Transforming G into the spatial domain gives a confidence map of the location.

$$
G = F \odot H^* \tag{1}
$$

KORK ERKER ADE YOUR

Initial position

 \triangleright Onboard image at take off position, and its corresponding rectangular region in the map

イロト イ部 トイ君 トイ君 トッ 君の

 299

Initial position

- \blacktriangleright The confidence map of the frame
- \blacktriangleright The black area represents the highest confidence
- \blacktriangleright However, this may fail if the image contains little distinctive feature

Position prediction

- \triangleright The current position is predicted to confine template matching
- \blacktriangleright The features are selected and tracked based on optical flow
- \triangleright Compute the motion field using angular velocities and depth as in PIX4FLOW
- Inter-frame motion can also be obtained from homography decomposition

KORKA SERKER ORA

Feature based approach

- \triangleright Maximal Self Dissimilarity (MSD) measures the self-dissimilarity of a pixel according to the rarity of the central patch
- \blacktriangleright The similarity metric is Sum of Squared Distance (SSD)
- \blacktriangleright The image is transformed into a saliency map based on the rarity of the patch, and then keypoints are detected at maximum in the map

KORK ERKER ADE YOUR

Feature based approach

- \triangleright Local Self Similarity (LSS) descriptor is formed by comparing the image patch with its surrounding regions using SSD
- \triangleright The correlation surface is transformed to the descriptor by log-polar binning

KORK ERKER ADE YOUR

Feature based approach

- \triangleright Only the keypoints in the reference map will be used due to inconsistency for different modalities
- \triangleright For correct window, all keypoints will overlap those in the template, achieving minimum L2 distance over the feature descriptors

Feature based approach

- \blacktriangleright Feature based approach follows GPS closely
- \triangleright But SSD computations in MSD and LSS are time consuming

Feature based approach

- \blacktriangleright Hand-crafted keypoint detection may lack semantic consistency
- \triangleright However, training CNNs often require large annotated dataset

KORKA SERKER ORA

- If it really necessary to label each keypoint for CNNs?
- \triangleright Class labels could provide weak supervision

Feature based approach

- \triangleright The input image is fed to a pretrained network on classification
- \triangleright Use an occluder to obtain the coarse scale heatmap
- Guided backpropagation is performed to get the fine scale heatmap

KORK STRAIN A BAR SHOP

Feature based approach

- \triangleright At coarse scale, the contribution of each patch in the input image for object classification is analyzed by covering it and examine the change in the confidence of class prediction
- \blacktriangleright If the confidence of the correct class drops dramatically due to the occlusion of a patch, then the probability of the patch containing a discriminative feature is very high

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Feature based approach

- ► The network is denoted by a mapping $f: \mathbb{R}^N \mapsto \mathbb{R}^C$, $x \in \mathbb{R}^N$, $\mathsf{y} \in \mathbb{R}^\mathcal{C}$, where x in an image of N pixels, and $\mathbf{y} = [y_1, ..., y_C]^T$ denotes the classification score of C classes, with y_i being the probability of the *i* th class. The pixels inside an occluder b of image x are replaced by a vector g , and this occlusion function is denoted by h_g . Hence the change in classification score is $\delta_f(x, b) = max(f(x) - f(h_g(x, b)), 0)$.
- \triangleright To avoid creating edges, random colors are used as g instead of mono color
- \triangleright Since only the class with maximum probability is considered, the decrease of score is $d(x,b)=\delta_f(x,b)^{\sf \tiny T} \mathbb{I}^{\sf \tiny C}$, where $\mathbb{I}^{\sf \tiny C}\in\mathbb{N}^{\sf \tiny C}$ is an indicator vector whose elements are zero except at the predicted class c.

Feature based approach

- \triangleright For the fine scale, guided backpropagation is performed on the unit that has maximum activation from the softmax layer
- \blacktriangleright It reveals which pixel positively influences the class prediction, by maximizing the probability of the predicted class while minimizing that of other classes, ie it locates the pixel where the least modification has to be made in order to affect the prediction the most
- \blacktriangleright It's called guided backpropagation because the gradient is guided by the input from below and by the error from above

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Feature based approach

- \blacktriangleright The activation at layer $l + 1$ could be obtained from the activation at layer / through a ReLU unit as $f_i^{l+1} = ReLU(f_i^l) = max(f_i^l, 0).$
- \blacktriangleright The backpropagation is $R_i^{\;l}=(f_i^{\;l}>0)\cdot R_i^{\;l+1}$, where $R_i^{\ l+1} = \frac{\partial f^{out}}{\partial f_i^{\ l+1}}$ $\frac{\partial f^{out}}{\partial f_i^{l+1}}$.
- \triangleright For guided backpropagation, not only the input is positive, but also the gradient, i.e. $R_i^{\; \prime} = (f_i^{\; \prime} > 0) \cdot (R_i^{\; \prime +1} > 0) \cdot R_i^{\; \prime +1}.$ In this way only the positive gradients are retained in backpropagation

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Feature based approach

- \blacktriangleright The coarse scale and fine scale are combined linearly
- \blacktriangleright The heatmaps are transformed into log-likelihood keypoint distributions used as the confidence score

Feature based approach

- \blacktriangleright The most important patches are usually those centered around the keypoints, such as those near the rear view mirrors, head lights as well as the wheels, which are semantically consistent
- \triangleright The rear view mirrors as well as car logos are always highlighted in the gradient images from guided backpropagation, which confirms the close relevance of keypoints and high activations
- \triangleright This approach could detect semantically consistent keypoints in the reference map and the onboard image, eg corners of the man-made structures, and sliding window search could be avoided. However, it's still difficult to obtain real-time performance due to forward and backward passes

Gradient based approach

- ▶ Histograms of Oriented Gradients (HOG) descriptors are used to encode the gradient information in multi-modal images
- \triangleright The HOG features for the map are computed offline
- \triangleright During onboard processing, we use global search to initialize the UAV position
- \blacktriangleright Then for each frame, we track the pose by position prediction and image registration

 $(1 - 4)$ $(1 -$

 \equiv

 Ω

- \triangleright To construct HOG, 1D point derivative masks are convolved with the image to get the gradients
- \triangleright Magnitude-weighted gradient orientation histograms are constructed in cells and blocks
- \triangleright Clipped L_2 norm normalization scheme is performed to the histogram of every block to compensate for illumination variance
- \triangleright Because the blocks are overlapped, every cell contributes to multiple blocks, significantly improving the performance of HOG
- \triangleright Eventually the histograms are vectorized to form a 1D feature

- \triangleright The gradient patterns for houses and roads are quite similar in HOG glyph
- \blacktriangleright The structures of road and house are clearly preserved even under dramatic photometric variations

- \triangleright Several metrics are compared to compute the similarity of HOG descriptors
- \triangleright Correlation and Intersection measures similarity while Chi-Square and Bhattacharyya measures distance
- \triangleright We transform similarity values to distance by $d = 1$. correlation
- \blacktriangleright The distance values are then normalized with respect to the ground truth value
- \triangleright Correlation is the best for differentiating the outliers, since the distances of 1.829, 2.428 are the largest

Gradient based approach

- \triangleright Weighted coarse to fine search is used to avoid sliding window search
- \triangleright There are N particles, and for each particle p, its properties include $\{x, y, H_x, H_y, w\}$, where (x, y) specify the top left pixel of the particle, (H_x, H_y) is the size of the subimage covered by the particle and w is the weight. The (x, y) is generated around the predicted position, while (H_{x}, H_{y}) equals to the size of the onboard image
- \triangleright The optimal estimation of the posterior is the mean state of the particles. Suppose each p predicts a location l , then the estimated state is

$$
E(I) = \sum_{i=1}^{N} w_i I_i
$$
 (2)

KORK (FRAGE) EL POLO

Gradient based approach

- Based on the predicted state (x_p, y_p) of where the UAV could be in the next frame, we calculate the likelihood that UAV location (x_c, y_c) is actually at this location.
- \triangleright After the particles are drawn, the subimages of the map located at the particles are compared with the current frame. To estimate the likelihood, we use Gaussian distribution to normalize these distance values, where d is the distance between the two images under comparison, σ is the standard deviation, \hat{w} is then normalized based on the sum of all weights to ensure that w is in the range $[0, 1]$.

$$
\hat{w} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-d^2}{2\sigma^2})
$$
\n(3)

KORKAR KERKER EL VOLO

- \triangleright The search is conducted from coarse level to fine level to reduce the computational burden
- \triangleright For the coarse search, N particles are drawn randomly in a rectangular area, whose width and height are both s_c , with a large search interval Δ_c .
- \triangleright The fine search is carried out in an smaller area with size s_f and search interval Δ_f .
- \triangleright HOP relies mainly on coarse search which is often quite accurate. If the minimum distance of coarse search is larger than a threshold τ_d , then the match is considered invalid. Only when coarse search fails to produce valid match do we conduct fine search

Gradient based approach

- \triangleright The most important parameters are N and s_c .
- \triangleright More N increases the accuracy of the weighted center but demands more computational resources.
- I Likewise, larger s_c ensures the matching is robust to jitter while smaller s_c reduces the time consumed.

KORK ERKER ADE YOUR

 \blacktriangleright Hence, we trade off the robustness and efficiency when determining those parametric values.

- \blacktriangleright The root mean square error (RMSE) of HOP is 6.773 m
- It runs at 15.625 Hz on average

Geo-referenced localization Key insights

- \triangleright Low resolution Google Map could be used to provide prior information for localization
- \triangleright CNNs trained with weak supervision may provide consistent keypoints

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright HOG is an effective descriptor for multi-modal image registration

Related papers

- Geo-referenced UAV localization is presented in $[1]$
- \triangleright Keypoint detection using CNNs is presented in [\[2\]](#page-34-1)
- [Google Map Aided Visual Navigation for UAVs in GPS-denied](https://arxiv.org/pdf/1703.10125.pdf) [Environment](https://arxiv.org/pdf/1703.10125.pdf)

KORK ERKER ADE YOUR

[Weakly supervised keypoint detection](https://moshanatucsd.github.io/pdfs/report/Weakly%20supervised%20keypoint%20detection.pdf)